
ITERATIVE LINEAR REGRESSION CLASSIFICATION FOR IMAGE RECOGNITION

Qingxiang Feng and Yicong Zhou

Department of Computer and Information Science
University of Macau, Macau 999078, China
qxfeng@umac.mo, yicongzhou@umac.mo

ABSTRACT

Traditional linear regression classification (LRC) suffers from
a small sample size problem that the limited training samples
of each class cannot comprehensively reflect different varia-
tions of the class. To address the problem, this paper pro-
poses a novel iterative linear regression classification (ILRC)
for image recognition. Different from traditional LRC, ILRC
not only generates several new subspaces in each iteration but
also uses the discrimination idea to optimize the training-set
and testing samples. Extensive experiments on five bench-
mark databases demonstrate that the proposed ILRC classifi-
er achieves better recognition performance than the traditional
LRC and several state-of-the-art methods.

Index Terms— Linear Regression, Object Recognition,
Face Recognition.

1. INTRODUCTION

Pattern recognition systems are known to be critically depen-
dent on classifiers. The nearest neighbor (NN) [1] and near-
est subspace (NS) [2] methods are well-known approaches in
the pattern recognition area. To classify the testing sample,
NN uses the best representation of a training sample, while
NS is based on the best linear representation of all training
samples in each class. Samples from a specific object class
are known to lie on a linear subspace [3, 4]. Using this con-
cept, the locally linear regression (LLR) [5] was proposed to
specifically address pose variations for face recognition. Us-
ing the similar concept, the linear regression classification (L-
RC) [6] was proposed to develop class-specific models of the
registered users and to redefine the face recognition task as
a linear regression problem. Since 2010, the LRC-associated
approaches [7] have been proposed to prove the recognition
performance of LRC under different situations like variable
illuminations and facial expressions. These approaches in-
clude the kernel-LRC [8,9], improved-PCA-LRC [10], linear
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discrimination regression classification (LDRC) [11] and u-
nitary regression classification (URC) [12]. Different from
the class-model of LRC, sparse-representation-based classi-
fication (SRC) [13, 14] adopts the all-class-model to classify
the testing sample. After the SRC classifier being proposed,
several improved classifiers were presented for face recogni-
tion. For example, Zhang et al. proposed the collaborative-
representation-based classification (CRC) [15]. Xu et al. pro-
posed two-phase sparse representation (TPSR) [16] and so on.
In this paper, the iterative linear regression classification (IL-
RC) is proposed for image recognition. ILRC finds the novel
class subspace by iteratively removing the unimportant ele-
ments, To compare the recognition performance of ILRC with
those of the LRC classifier and several state-of-the-art meth-
ods, we carry out extensive experiments on the Coil-100 ob-
ject database, Eth80 object database, NCKU CSIE Robotics
Lab face database, GT face database and AR face database.

2. PROPOSED METHOD

After briefly reviewing the traditional LRC, this section first
introduces the iterative refinement of the subspace and testing
sample. Using these novel subspaces and testing sample, we
further propose a novel classifier, called the iterative linear
regression classification (ILRC)

2.1. Traditional LRC

LetX = {xci}, c = 1, 2, · · · ,M, i = 1, 2, · · · , Nc denote the
prototype set, where xci is the ith prototype belonging to the
cth class, M is the number of classes, and Nc is the number
of prototype-samples in the cth class.
Because patterns from the same class lie on a linear sub-
space, the traditional LRC classifier forms a class-model Xc

by stacking the q-dimensional image vectors belonging to the
same class.

Xc = [ xc1 xc2 .... xcNc
] ∈ Rq×Nc (1)

Let x be an unlabeled test image vector. If x belongs to the
cth class, it may be represented as a linear combination of the
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training images from the same class.

x ≈ xc = Xcβc (2)

where the predicted vector xc is the projection of x onto the
cth class subspace and the vector of regression coefficients
βc ∈ RNc×1 can be calculated by

βc = (Xc
TXc)

−1Xc
Tx (3)

LRC computes the distance measure between the predicted
vector xc and the original testing vector x as

dc(x) = ||x− xc|| (4)

where || ∗ || means L2- norm. The rule of LRC is to choose
the class with the minimum distance as

min
c∗

dc(x) , c = 1, 2, ...,M (5)

However, LRC has a small sample size problem that limited
training samples of each class cannot comprehensively reflect
different variations of the class. To solve this problem, we
propose a novel method to optimize the subspace as follows.

2.2. Iterative Refinement of Subspace and Test Sample

Given the cth class subspace determined by Nc prototype
sample vectors {xc1, xc2...xcNc

} . For a testing sample x, the
linear regression to the cth class can be described by

x =

Nc∑
i=1

αix
c
i (6)

If the mean of the prototype sample vectors is computed as

x̄c,0 = (1/Nc)
Nc∑
i=1

xc
i , we can remove the mean and discard

a selected unlikely sample xc
j∗ . After the first round of sub-

space refinement, the remainingNc−1 prototype samples can
be represented as,

.xc,1
i = xc

i − x̄c,0, i = 1, 2, ..., Nc − 1 (7)

It can also be described by a newly updated subspace {xc,1
1 ,

xc,1
2 , ...,xc,1

Nc−1} . Accordingly, the testing sample also needs
to remove the prototype mean as

xc,1 = x − x̄c,0 (8)

Similarly, after the kth iteration (for k > 1), the Nc − k pro-
totype sample vectors are given by

xc,k
i = xc,k−1

i − x̄c,k−1 (9)

and the kth updated testing sample is expressed by

xc,k = xc,k−1 − x̄c,k−1 (10)

where

x̄c,k−1 =
1

(Nc − k + 1)

Nc−k+1∑
i=1

xc,k−1
i (11)

After the kth iteration process of discarding a selected unlike-
ly sample, the updated Nc − k prototype samples can be rep-
resented by the kth refined subspace {xc,k

1 ,xc,k
2 , ...,xc,k

Nc−k}.
The selection of the unlikely samples in each iteration will be
discussed in Section 2.3.

2.3. Proposed ILRC

First, stacking the q-dimensional image vectors, the class-
specific model Xc is given as

Xc = [ xc
1 xc

2 · · · xc
Nc

] ∈ Rq×Nc (12)

By iteratively discarding a selected unlikely sample, the up-
dated Nc − k prototype samples at the kth iteration can be
represented by

Xc,k = {xc,k
1 ,xc,k

2 , ...,xc,k
Nc−k} (13)

Let x be an unlabeled testing image and xc,0 = x for each
c. Using the traditional LRC, the kth updated testing sample
vector in the cth class xc,k can be represent by

xc,k =

Nc−k∑
i=1

βc,k
i xc,k

i (14)

where the optimal regression coefficient vector βc,k ∈
R(Nc−k)×1 can be calculated as

βc,k = (XT
c,kXc,k)

−1XT
c,kxc,k, foreachc (15)

The kth updated distance between the testing sample xc,k and
the subspace Xc,k can be computed as

dc,k = ||xc −XT
c,kβ

c,k|| (16)

If βc,k
j∗ has the minimum magnitude among the elements of

βc,k as
jc∗ = min

i

∣∣∣βc,k
i

∣∣∣ (17)

Based on the linear regression defined in Eqn.(14), the cor-
responding prototype sample xc,k

jc∗ will be the most unlikely
one. Hence, in the kth iteration, Xc,k ∈ Rq×(Nc−k) becomes
the class subspace by removing the mean and the most un-
likely prototype sample, xc,k

jc∗ as Eqns. (9) and (11). The
kth updated testing sample in (14) is iteratively computed by
Eqn. (10). This new iterative class subspace will be contin-
uously updated until the number of samples of the new class
subspace is equal to one. The distance between the testing
sample and the cth class is described as

dc = min(dc,k), k = 1, 2, ..., Nc, for, all, c (18)
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Algorithm 1: Iterative Linear Regression Classification
Input:The original testing sample x and original prototype-
set X = {xci , c = 1, 2, · · · ,M, i = 1, 2, · · · , Nc}
Output:The index of x.

Step 1: Construct the M class-models Xc using Eqn. (12).

Step 2: For the kth(k = 1, 2, ..., Nc) iteration, do

Step 2.1: Obtain the novel class-model Xc,k and novel test
vector xc,k by (13) and (14), respectively

Step 2.2: Use Eqn. (16) to compute the kth distance dc,k

between the prototype subspace Xc,k and test sample xc,k

in the cth class.

Step 2.3: Select the minimum distance in the iterations by
Eqn. (18),dc , which will be treated as the distance between
the test sample x and the cth class subspace.

Step 3: The classification rule of ILRC is to select the class
with the minimum distance according to Eqn. (19).

Finally, the ILRC classifier selects the class with the mini-
mum one as given by

min
c∗

dc, c = 1, 2, ...,M (19)

Algorithm 1 shows the detailed classification procedures
of ILRC.

2.4. ILRC vs LRC

Because each testing image can be represented as a linear
combination of all training images of a specific class, ILR-
C is a statistical method similar to LRC. However, ILRC is
different from LRC in following aspects.
(1) LRC utilizes the original training-set to solve the least
square error for classification. However, ILRC generates new
training images in each iteration. This allows ILRC to have
strongly representational capability and thus a better recogni-
tion rate than LRC.
(2) Motivated by LDA [17] and LDRC [11], ILRC increases
the discriminative information in the training set and testing
sample in each iteration. This is helpful for classification. But
LRC fails to consider it.

3. EXPERIMENTAL RESULTS

To verify the performance of the proposed algorithm for ob-
ject and face recognition, ILRC is compared with several ex-
isting methods on five well-known databases. These meth-
ods include the LRC [6], URC [12], LDRC [11], SVM [18],
LDA [17], SRC [14], CRC [15], TPSR [16], SFR [19], M-
RC [20] and DLRC [21]. The optimization parameter is set
0.01 in the experiments.

Table I: RECOGNITION RATES OF SEVERAL CLAS-
SIFIERS ON THE ETH80 AND COIL100 OBJECT
DATABASES (%)

Eth80 Coil100
3 4 3 4

SVM 9.14 10.57 58.22 58.13
LDA 9.97 9.73 63.44 58.75
CRC 11.25 12.80 65.56 65.00
SRC 12.86 14.97 68.89 67.75
TPSR 9.24 10.51 67.00 64.88
LRC 15.46 18.31 74.89 73.75
URC 15.53 18.11 74.89 73.75
SFR 6.74 8.34 60.11 58.25
DLRC 8.91 10.77 64.44 64.88
ILRC 19.57 22.53 76.56 74.88

3.1. Experimental setups of five databases

1): The eth80 object database [22]: In our experimental, all
images are resized to 32 × 32 grayscale images.
2): The Coil-100 dataset [23]: Our experiments use 12 dif-
ferent view angles per object (0, 30, 60,..., 330). The subset
of Coil-100 dataset contains 1200 images downsampled into
size of 32 × 32.
3): NCKU CSIE Robotics Lab face database [24]: It contains
6660 images of 90 subjects. In our experimental, we use the
part A containing 3330 images of 90 subjects. Each image is
cropped into size of 40 × 40.
4): Georgia Tech face database [25]: It contains images of 50
people. Each image is manually cropped into size of 30× 40.
5): The AR database [26]: To test the performance of ILRC
with expression variations, a subset of the AR database in-
cludes 600 face images of 100 individuals with different ex-
pressions (smile, anger, scream). All images are cropped into
50 × 40 pixels.

(a) Eth80 (b) Coil100

(c) GT (d) AR

(e) NCKU

Fig. 1: Sample images from the (a) eth80 object database, (b)
Coil100 object database, (c) GT face database, (d) AR face
database, and (e) NCKU CSIE Robotics Lab face database.
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Table II: RECOGNITION RATES OF SEVERAL CLASSI-
FIERS ON THE AR FACE DATABASE (%)

Classifier Scream Anger Smile Mean
SVM 63.50 82.50 88.50 78.17
LDA 44.00 77.00 73.50 64.83
CRC 74.50 96.50 97.00 89.33
SRC 80.50 95.00 96.50 90.67
TPSR 76.00 96.00 97.50 89.83
LRC 78.50 95.50 93.50 89.17
LDRC 74.00 95.00 98.00 73.75
SFR 58.00 90.00 89.50 79.17
DLRC 66.00 93.50 94.00 84.50
ILRC 80.50 98.00 97.00 91.83

3.2. Object Recognition

Here, we use the eth80-cropped-close128 and Coil-100
databases to verify the performance of ILRC for object recog-
nition. In the experiments, we choose 3 and 4 images of each
object from two databases as the prototype set and the rest
images form the testing set. We evaluate the performance
of several classifiers for object recognition. From the exper-
iment results in Table I, we can conclude that (1) the per-
formance of all classifiers changes dramatically in different
databases. This is because object recognition is a complicated
and challenging task. (2) ILRC obtains the best performance
among all compared classifiers for object recognition.

3.3. Face Recognition with Expression Variations

In this subsection, the AR face database is used to evaluate
the performance of ILRC for face recognition with expres-
sion variations. We first test the recognition rate of the ’smile’
expression where all smile face images are used as the test-
ing set and the rest face images (anger and scream) form the
training set. Similar experiment setups conduct for evaluating
expressions: ’anger’ and ’scream’. The results are shown in
Table II. As can be seen, all methods have different recogni-
tion performances for different expressions. For example, all
methods have lower recognition rates on ’scream’ than those
on ’smile’. ILRC performs the best in these compared meth-
ods for face recognition with expression variation.

3.4. Face Recognition with Gesture Variation

This subsection uses the Georgia Tech and NCKU CSIE
Robotics Lab face databases to verify the performance of
ILRC for face recognition with gesture variations. In the ex-
periments, we choose 3, 4 and 5 images of each person from
two databases as the prototype set and the rest images are
used as the testing set. We compare ILRC with several ex-
isting classifiers for face recognition with gesture variations.
The experimental results are shown in Tables III and Table IV.

Table III: THE RECOGNITION RATE OF SEVERAL
CLASSIFIERS ON THE GT FACE DATABASE (%)

Classifier 3 4 5 Mean
SVM 31.00 36.00 40.40 35.80
LDA 40.83 33.82 31.00 35.22
CRC 46.00 49.64 54.60 50.08
TPSR 53.17 55.82 59.20 56.06
LRC 51.83 56.36 59.20 55.80
URC 51.83 56.36 59.20 55.80
LDRC 41.33 41.82 44.20 42.45
SFR 40.83 44.55 50.00 45.13
DLRC 45.50 52.00 56.80 51.43
ILRC 53.83 58.18 59.80 57.27

Table IV: THE RECOGNITION RATE OF SEVERAL
CLASSIFIERS ON THE NCKU CSIE ROBOTICS LAB
FACE DATABASE (%)

Classifier 3 4 5 Mean
SVM 40.65 41.41 42.92 41.03
CRC 45.49 45.56 46.63 45.53
SRC 50.44 50.56 51.31 50.50
TPSR 45.39 44.28 46.49 44.84
LRC 49.61 49.02 49.76 49.31
URC 51.54 51.62 52.88 51.58
SFR 40.92 41.82 43.37 41.37
DLRC 42.29 42.16 44.86 42.23
ILRC 54.15 54.24 55.21 54.20

We can observe that the sparse-based and linear-regression-
based methods obtain unsatisfactory recognition performance
for this task. However, ILRC outperforms other existing clas-
sifiers for face recognition with gesture variations.

4. CONCLUSION

In this paper, iterative linear regression classification (ILR-
C) has been proposed for image recognition. ILRC uses the
novel iterative class subspaces to increase the number of pro-
totype samples such that the class subspace have better repre-
sentative capability for classification and recognition. Exper-
iment results on five benchmark datasets have demonstrated
that the proposed ILRC achieves the best recognition rates
compared with the LRC classifier and several state-of-the-art
methods.What is more, we know that the object recognition
is a complicated and challenging task so that the performance
of the classifiers changes dramatically in different database.
Besides, we know that the sparse-based and linear-regression-
based methods are sensitive to face recognition with gesture
variations.
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